Angiotensin induces the urinary peristaltic machinery during the perinatal period.

Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I
J Clin Invest. 1998 102 (8): 1489-97

PMID: 9788961 · PMCID: PMC508998 · DOI:10.1172/JCI4401

The embryonic development of mammalian kidneys is completed during the perinatal period with a dramatic increase in urine production, as the burden of eliminating nitrogenous metabolic waste shifts from the placenta to the kidney. This urine is normally removed by peristaltic contraction of the renal pelvis, a smooth muscle structure unique to placental mammals. Mutant mice completely lacking angiotensin type 1 receptor genes do not develop a renal pelvis, resulting in the buildup of urine and progressive kidney damage. In mutants the ureteral smooth muscle layer is hypoplastic and lacks peristaltic movements. We show that angiotensin can induce the ureteral smooth muscles in organ cultures of wild-type, but not mutant, ureteral tissues and that, in wild-type mice, expression of both renal angiotensin and the receptor are transiently upregulated at the renal outlet at birth. These results reveal a new role for angiotensin in the unique cellular adaptations of the mammalian kidney to the physiological stresses of postnatal life.

MeSH Terms (16)

Angiotensin II Animals Animals, Newborn Kidney Pelvis Ligation Mice Mice, Inbred C57BL Mice, Mutant Strains Muscle, Smooth Muscle Contraction Receptor, Angiotensin, Type 1 Receptor, Angiotensin, Type 2 Receptors, Angiotensin Tissue Distribution Ureter Urine

Connections (3)

This publication is referenced by other Labnodes entities:

Links