Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI.

Belger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic P, McCarthy G
Hum Brain Mapp. 1998 6 (1): 14-32

PMID: 9673660 · PMCID: PMC6873355

Neuroimaging studies in humans have consistently found robust activation of frontal, parietal, and temporal regions during working memory tasks. Whether these activations represent functional networks segregated by perceptual domain is still at issue. Two functional magnetic resonance imaging experiments were conducted, both of which used multiple-cycle, alternating task designs. Experiment 1 compared spatial and object working memory tasks to identify cortical regions differentially activated by these perceptual domains. Experiment 2 compared working memory and perceptual control tasks within each of the spatial and object domains to determine whether the regions identified in experiment 1 were driven primarily by the perceptual or mnemonic demands of the tasks, and to identify common brain regions activated by working memory in both perceptual domains. Domain-specific activation occurred in the inferior parietal cortex for spatial tasks, and in the inferior occipitotemporal cortex for object tasks, particularly in the left hemisphere. However, neither area was strongly influenced by task demands, being nearly equally activated by the working memory and perceptual control tasks. In contrast, activation of the dorsolateral prefrontal cortex and the intraparietal sulcus (IPS) was strongly task-related. Spatial working memory primarily activated the right middle frontal gyrus (MFG) and the IPS. Object working memory activated the MFG bilaterally, the left inferior frontal gyrus, and the IPS, particularly in the left hemisphere. Finally, activation of midline posterior regions, including the cingulate gyrus, occurred at the offset of the working memory tasks, particularly the shape task. These results support a prominent role of the prefrontal and parietal cortices in working memory, and indicate that spatial and object working memory tasks recruit differential hemispheric networks. The results also affirm the distinction between spatial and object perceptual processing in dorsal and ventral visual pathways.

MeSH Terms (12)

Adult Brain Mapping Female Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Memory, Short-Term Parietal Lobe Perception Space Perception Temporal Lobe

Connections (1)

This publication is referenced by other Labnodes entities: