, a bio/informatics shared resource is still "open for business" - Visit the CDS website

Evidence for a 1-electron oxidation mechanism in N-dealkylation of N,N-dialkylanilines by cytochrome P450 2B1. Kinetic hydrogen isotope effects, linear free energy relationships, comparisons with horseradish peroxidase, and studies with oxygen surrogates.

Guengerich FP, Yun CH, Macdonald TL
J Biol Chem. 1996 271 (44): 27321-9

PMID: 8910308 · DOI:10.1074/jbc.271.44.27321

Many enzymes catalyze N-dealkylations of alkylamines, including cytochrome P450 (P450) and peroxidase enzymes. Peroxidases, exemplified by horseradish peroxidase (HRP), are generally accepted to catalyze N-dealkylations via 1-electron transfer processes. Several lines of evidence also support a 1-electron mechanism for many P450 reactions, although this view has been questioned in light of reported trends for kinetic hydrogen isotope effects for N-demethylation with a series of 4-substituted N,N-dimethylanilines. No continuous trend for an increase of isotope effects with the electronic parameters of para-substitution was seen for the P450 2B1-catalyzed reactions in this study. The larger value seen with the 4-nitro derivative is consistent with a shift in mechanism due to either a reversible electron transfer step preceding deprotonation or to a hydrogen atom abstraction mechanism. With HRP, the trend is to lower isotope effects with para electron-withdrawing substituents, due to an apparent shift in rate-limiting steps. Biomimetic model high-valent porphyrins showed reduction rates with variously 4-substituted N,N-dialkylanilines that were consistent with a positively charged intermediate; such relationships were not seen for anisole O-demethylation with P450 2B1. In contrast to the case with the NADPH-supported P450 reactions, high deuterium isotope effects ( approximately 7) were seen in the N-dealkylations supported by the oxygen surrogate iodosylbenzene. With iodosylbenzene, colored aminium radicals were observed in the oxidations of aminopyrine, N,N-dimethyl-4-aminothioanisole, and 4-methoxy-N,N-dimethylaniline. With the latter compound, a substantial intermolecular deuterium isotope effect was observed for N-demethylation. In the N-dealkylation of N-ethyl,N-methylaniline by P450 2B1 (NADPH-supported), the ratio of N-demethylation to N-deethylation was 16. Although it is probably possible for P450s to catalyze amine N-dealkylations via hydrogen atom abstraction when such a course is electronically or sterically favored, we interpret the evidence to favor a 1-electron pathway with N,N-dialkylamines with P450 2B1 as well as HRP and several biomimetic models.

MeSH Terms (13)

Alkylation Aniline Compounds Animals Cytochrome P-450 CYP2B1 Electrons Horseradish Peroxidase Kinetics Microsomes, Liver Models, Chemical Oxidation-Reduction Phenobarbital Rats Substrate Specificity

Connections (1)

This publication is referenced by other Labnodes entities: