Aspects of calcium-activated chloride currents: a neuronal perspective.

Scott RH, Sutton KG, Griffin A, Stapleton SR, Currie KP
Pharmacol Ther. 1995 66 (3): 535-65

PMID: 7494858 · DOI:10.1016/0163-7258(95)00018-c

Ca(2+)-activated Cl- channels are expressed in a variety of cell types, including central and peripheral neurones. These channels are activated by a rise in intracellular Ca2+ close to the cell membrane. This can be evoked by cellular events such as Ca2+ entry through voltage- and ligandgated channels or release of Ca2+ from intracellular stores. Additionally, these Ca(2+)-activated Cl currents (ICl(Ca)) can be activated by raising intracellular Ca2+ through artificial experimental procedures such as intracellular photorelease of Ca2+ from "caged" photolabile compounds (e.g. DM-nitrophen) or by treating cells with Ca2+ ionophores. The potential changes that result from activation of Ca(2+)-activated Cl- channels are dependent on resting membrane potential and the equilibrium potential for Cl-. Ca2+ entry during a single action potential is sufficient to produce substantial after potentials, suggesting that the activity of these Cl- channels can have profound effects on cell excitability. The whole cell ICl(Ca) can be identified by sensitivity to increased Ca2+ buffering capacity of the cell, anion substitution studies and reversal potential measurements, as well as by the actions of Cl- channel blockers. In cultured sensory neurones, there is evidence that the ICl(Ca) deactivates as Ca2+ is buffered or removed from the intracellular environment. To date, there is no evidence in mammalian neurones to suggest these Ca(2+)-sensitive Cl- channels undergo a process of inactivation. Therefore, ICl(Ca) can be used as a physiological index of intracellular Ca2+ close to the cell membrane. The ICl(Ca) has been shown to be activated or prolonged as a result of metabolic stress, as well as by drugs that disturb intracellular Ca2+ homeostatic mechanisms or release Ca2+ from intracellular stores. In addition to sensitivity to classic Cl- channel blockers such as niflumic acid, derivatives of stilbene (4,4'diisothiocyanostilbene-2,2'-disulphonic acid, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid) and benzoic acid (5-nitro 2-(3-phenylpropylamino) benzoic acid), ICl(Ca) are also sensitive to polyamine spider toxins and some of their analogues, particularly those containing the amino acid residue arginine. The physiological role of Ca(2+)-activated Cl- channels in neurones remains to be fully determined. The wide distribution of these channels in the nervous system, and their capacity to underlie a variety of events such as sustained or transient depolarization or hyperpolarizations in response to changes in intracellular Ca2+ and variations in intracellular Cl- concentration, suggest the roles may be subtle, but important.

MeSH Terms (11)

Animals Calcium Cations, Divalent Cell Membrane Chloride Channels Electrophysiology Homeostasis Humans Neurons Polyamines Spider Venoms

Connections (1)

This publication is referenced by other Labnodes entities:

Links