Metabolic fate of radiolabeled prostaglandin D2 in a normal human male volunteer.

Liston TE, Roberts LJ
J Biol Chem. 1985 260 (24): 13172-80

PMID: 3863815

50 microCi of [3H]prostaglandin D2 tracer (100 Ci/mmol) was infused intravenously into a normal human male volunteer. 75% of the infused radioactivity was excreted into the urine within 5 h. This urine was added to urine obtained from two mastocytosis patients with marked overproduction of prostaglandin D2. Radiolabeled prostaglandin D2 urinary metabolites were chromatographically isolated and purified and subsequently identified by gas chromatography-mass spectrometry. 25 metabolites were identified. 23 of these compounds comprising 37% of the recovered radioactivity had prostaglandin F-ring structures, and only two metabolites comprising 2.7% of the recovered radioactivity retained the prostaglandin D-ring structure. The single most abundant metabolite identified was 9,11-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid which was isolated in a tricyclic form as a result of formation of a lower side chain hemiketal followed by lactonization of the terminal carboxyl and the hemiketal hydroxyl. Different isomeric forms of several prostaglandin F-ring metabolites were identified. An isomer of prostaglandin F2 alpha was also excreted intact into the urine as a metabolite of prostaglandin D2. 15 PGF-ring compounds were treated with n-butylboronic acid and 13 failed to form a boronate derivative, suggesting that the orientation of the hydroxyl group at C-11 in these 13 metabolites is beta. This study documents that prostaglandin D2 is metabolized to prostaglandin F-ring metabolites in vivo in humans. These results also bring into question the accuracy of quantifying prostaglandin F2 alpha metabolites as a specific index of endogenous prostaglandin F2 alpha biosynthesis, as well as quantifying urinary prostaglandin F2 alpha as an accurate index of renal production of prostaglandin F2 alpha.

MeSH Terms (15)

Chemical Phenomena Chemistry Chromatography, High Pressure Liquid Dinoprost Gas Chromatography-Mass Spectrometry Humans Kinetics Male Mass Spectrometry Molecular Conformation Prostaglandin D2 Prostaglandins D Prostaglandins F Tritium Urticaria Pigmentosa

Connections (1)

This publication is referenced by other Labnodes entities: