Transformation of prostaglandin D2 to isomeric prostaglandin F2 compounds by human eosinophils. A potential mast cell-eosinophil interaction.

Parsons WG, Roberts LJ
J Immunol. 1988 141 (7): 2413-9

PMID: 3139758

PGD2 undergoes extensive isomerization in vivo followed by metabolism by 11-ketoreductase to yield a family of biologically active isomeric PGF2 compounds, including 9, alpha 11 beta-PGF2. Because immunologically activated human mast cells produce substantial quantities of PGD2 and eosinophils accumulate around mast cells at sites of immediate hypersensitivity reactions, the ability of eosinophils to metabolize PGD2 was investigated. Purified human circulating eosinophils from four different donors transformed PGD2 to 9, alpha 11 beta-PGF2 and 12-epi-9 alpha, 11 beta-PGF2 in a time- and concentration-dependent manner. The formation of these compounds increased rapidly during the first 30 min of incubation of eosinophils with PGD2 and tended to plateau at approximately 2 h. Detection and quantification of the formation of 9 beta,11 beta-PGF2 and its 12-epi isomer was accomplished by a negative ion chemical ionization gas chromatography/mass spectrometry assay. On one occasion, eosinophils from one donor also transformed PGD2 to two additional isomeric PGF2 compounds, the stereochemical structures of which were not identified. The ability of eosinophils to produce PGD2 was then investigated. After stimulation with 2 microM A23187, the major cyclooxygenase product formed was thromboxane B2 (2247 pg/10(6) eosinophils) whereas only small quantities of PGD2 were produced (50 pg/10(6) eosinophils). Inasmuch as PGF2 compounds can exert biologic actions that differ from those of PGD2, this ability of eosinophils to transform PGD2 to PGF2 compounds could alter the local biologic effects of PGD2 released from adjacent mast cells and thus may represent a physiologically relevant mast cell-eosinophil interaction.

MeSH Terms (12)

6-Ketoprostaglandin F1 alpha Biotransformation Cell Communication Chromatography, Ion Exchange Dinoprost Eosinophils Humans Isomerism Mast Cells Prostaglandin-Endoperoxide Synthases Prostaglandin D2 Substrate Specificity

Connections (1)

This publication is referenced by other Labnodes entities: