Intrinsic functional architecture of the non-human primate spinal cord derived from fMRI and electrophysiology.

Wu TL, Yang PF, Wang F, Shi Z, Mishra A, Wu R, Chen LM, Gore JC
Nat Commun. 2019 10 (1): 1416

PMID: 30926817 · PMCID: PMC6440970 · DOI:10.1038/s41467-019-09485-3

Resting-state functional MRI (rsfMRI) has recently revealed correlated signals in the spinal cord horns of monkeys and humans. However, the interpretation of these rsfMRI correlations as indicators of functional connectivity in the spinal cord remains unclear. Here, we recorded stimulus-evoked and spontaneous spiking activity and local field potentials (LFPs) from monkey spinal cord in order to validate fMRI measures. We found that both BOLD and electrophysiological signals elicited by tactile stimulation co-localized to the ipsilateral dorsal horn. Temporal profiles of stimulus-evoked BOLD signals covaried with LFP and multiunit spiking in a similar way to those observed in the brain. Functional connectivity of dorsal horns exhibited a U-shaped profile along the dorsal-intermediate-ventral axis. Overall, these results suggest that there is an intrinsic functional architecture within the gray matter of a single spinal segment, and that rsfMRI signals at high field directly reflect this underlying spontaneous neuronal activity.

MeSH Terms (12)

Action Potentials Animals Electrophysiological Phenomena Haplorhini Humans Magnetic Resonance Imaging Physical Stimulation Reproducibility of Results Rest Spinal Cord Spinal Cord Dorsal Horn Touch

Connections (2)

This publication is referenced by other Labnodes entities: