Low-rank plus sparse compressed sensing for accelerated proton resonance frequency shift MR temperature imaging.

Cao Z, Gore JC, Grissom WA
Magn Reson Med. 2019 81 (6): 3555-3566

PMID: 30706540 · PMCID: PMC6435412 · DOI:10.1002/mrm.27666

PURPOSE - To improve multichannel compressed sensing (CS) reconstruction for MR proton resonance frequency (PRF) shift thermography, with application to MRI-induced RF heating evaluation and MR guided high intensity focused ultrasound (MRgFUS) temperature monitoring.

METHODS - A new compressed sensing reconstruction is proposed that enforces joint low rank and sparsity of complex difference domain PRF data between post heating and baseline images. Validations were performed on 4 retrospectively undersampled dynamic data sets in PRF applications, by comparing the proposed method to a previously described L and total variation- (TV-) based CS approach that also operates on complex difference domain data, and to a conventional low rank plus sparse (L+S) separation-based CS reconstruction applied to the original domain data.

RESULTS - In all 4 retrospective validations, the proposed reconstruction method outperformed the conventional L+S and L +TV CS reconstruction methods with a 3.6× acceleration ratio in terms of temperature accuracy with respect to fully sampled data. For RF heating evaluation, the proposed method achieved RMS error of 12%, compared to 19% for the L+S method and 17% for the L +TV method. For in vivo MRgFUS thalamotomy, the peak temperature reconstruction errors were 19%, 31%, and 35%, respectively.

CONCLUSION - The complex difference-based low rank and sparse model enhances compressibility for dynamic PRF temperature imaging applications. The proposed multichannel CS reconstruction method enables high acceleration factors for PRF applications including RF heating evaluation and MRgFUS sonication.

© 2019 International Society for Magnetic Resonance in Medicine.

MeSH Terms (11)

Ablation Techniques Animals Brain Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Magnetic Resonance Imaging, Interventional Models, Biological Phantoms, Imaging Thalamus Thermography

Connections (1)

This publication is referenced by other Labnodes entities: