Functional connectivity with cortical depth assessed by resting state fMRI of subregions of S1 in squirrel monkeys.

Mishra A, Majumdar S, Wang F, Wilson GH, Gore JC, Chen LM
Hum Brain Mapp. 2019 40 (1): 329-339

PMID: 30251760 · PMCID: PMC6289644 · DOI:10.1002/hbm.24375

Whereas resting state blood oxygenation-level dependent (BOLD) functional MRI has been widely used to assess functional connectivity between cortical regions, the laminar specificity of such measures is poorly understood. This study aims to determine: (a) whether the resting state functional connectivity (rsFC) between two functionally related cortical regions varies with cortical depth, (b) the relationship between layer-resolved tactile stimulus-evoked activation pattern and interlayer rsFC pattern between two functionally distinct but related somatosensory areas 3b and 1, and (c) the effects of spatial resolution on rsFC measures. We examined the interlayer rsFC between areas 3b and 1 of squirrel monkeys under anesthesia using tactile stimulus-driven and resting state BOLD acquisitions at submillimeter resolution. Consistent with previous observations in the areas 3b and 1, we detected robust stimulus-evoked BOLD activations with foci were confined mainly to the upper layers (centered at 21% of the cortical depth). By carefully placing seeds in upper, middle, and lower layers of areas 3b and 1, we observed strong rsFC between upper and middle layers of these two areas. The layer-resolved activation patterns in areas 3b and 1 agree with their interlayer rsFC patterns, and are consistent with the known anatomical connections between layers. In summary, using BOLD rsFC pattern, we identified an interlayer interareal microcircuit that shows strong intrinsic functional connections between upper and middle layer areas 3b and 1. RsFC can be used as a robust invasive tool to probe interlayer corticocortical microcircuits.

© 2018 Wiley Periodicals, Inc.

MeSH Terms (8)

Animals Cerebral Cortex Connectome Magnetic Resonance Imaging Male Nerve Net Saimiri Somatosensory Cortex

Connections (3)

This publication is referenced by other Labnodes entities: