Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

Pishchany G, Mevers E, Ndousse-Fetter S, Horvath DJ, Paludo CR, Silva-Junior EA, Koren S, Skaar EP, Clardy J, Kolter R
Proc Natl Acad Sci U S A. 2018 115 (40): 10124-10129

PMID: 30228116 · PMCID: PMC6176635 · DOI:10.1073/pnas.1807613115

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified sp. AA4 as the producing strain and M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.

MeSH Terms (7)

Anthraquinones Anti-Bacterial Agents DNA, Bacterial DNA, Ribosomal Microbial Sensitivity Tests RNA, Ribosomal, 16S Streptomyces coelicolor

Connections (1)

This publication is referenced by other Labnodes entities: