Discovery of Tricyclic Triazolo- and Imidazopyridine Lactams as M Positive Allosteric Modulators.

Engers JL, Bender AM, Kalbfleisch JJ, Cho HP, Lingenfelter KS, Luscombe VB, Han C, Melancon BJ, Blobaum AL, Dickerson JW, Rook JM, Niswender CM, Emmitte KA, Conn PJ, Lindsley CW
ACS Chem Neurosci. 2019 10 (3): 1035-1042

PMID: 30086237 · PMCID: PMC6456254 · DOI:10.1021/acschemneuro.8b00311

This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M agonism, e.g., no M ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CL < 8 mL/min/kg and t > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( K < 0.05), despite a lack of hydrogen bond donors. However, removal of a single nitrogen atom to afford imidazopyridine derivatives proved to retain the excellent rat PK and provide high CNS penetration ( K > 2), despite inclusion of a basic nitrogen. Moreover, 24c was devoid of M agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.

MeSH Terms (11)

Allosteric Regulation Animals Drug Discovery Humans Imidazoles Lactams Mice Muscarinic Agonists Pyridines Rats Receptor, Muscarinic M1

Connections (2)

This publication is referenced by other Labnodes entities:

Links