HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis.

Choby JE, Grunenwald CM, Celis AI, Gerdes SY, DuBois JL, Skaar EP
mBio. 2018 9 (1)

PMID: 29437922 · PMCID: PMC5801465 · DOI:10.1128/mBio.02287-17

is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in heme biosynthesis. The first committed enzyme in the heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of leads to increased heme synthesis. Excess heme synthesis in a Δ mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX. is a leading cause of skin and soft tissue infections, endocarditis, bacteremia, and osteomyelitis, making it a critical health care concern. Development of new antimicrobials against requires knowledge of the physiology that supports this organism's pathogenesis. One component of staphylococcal physiology that contributes to growth and virulence is heme. Heme is a widely utilized cofactor that enables diverse chemical reactions across many enzyme families. relies on many critical heme-dependent proteins and is sensitive to excess heme toxicity, suggesting must maintain proper intracellular heme homeostasis. Because provides heme for heme-dependent enzymes via synthesis from common precursors, we hypothesized that regulation of heme synthesis is one mechanism to maintain heme homeostasis. In this study, we identify that posttranscriptionally regulates heme synthesis by restraining abundance of the first heme biosynthetic enzyme, GtrR, via heme and the broadly conserved membrane protein HemX.

Copyright © 2018 Choby et al.

MeSH Terms (8)

Aldehyde Oxidoreductases Bacterial Proteins Gene Deletion Gene Expression Gene Expression Regulation, Bacterial Heme Methyltransferases Staphylococcus aureus

Connections (1)

This publication is referenced by other Labnodes entities: