Ca2+-dependent activation of the malate-aspartate shuttle by norepinephrine and vasopressin in perfused rat liver.

Sugano T, Nishimura K, Sogabe N, Shiota M, Oyama N, Noda S, Ohta M
Arch Biochem Biophys. 1988 264 (1): 144-54

PMID: 2899418 · DOI:10.1016/0003-9861(88)90579-6

The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle.

MeSH Terms (20)

Alanine Animals Asparagine Aspartic Acid Calcimycin Calcium Ethanol Glucose Glutamates Glutamic Acid Ketoglutaric Acids Liver Malates Male Norepinephrine Perfusion Rats Rats, Inbred Strains Sorbitol Vasopressins

Connections (1)

This publication is referenced by other Labnodes entities: