Effect of human milk folate binding protein on folate intestinal transport.

Said HM, Horne DW, Wagner C
Arch Biochem Biophys. 1986 251 (1): 114-20

PMID: 2878641 · DOI:10.1016/0003-9861(86)90057-3

The present study examined the effect of human milk folate binding protein (FBP) on the intestinal transport of 5-methyltetrahydrofolate (5-CH3H4PteGlu). This was performed by examining the transport of radiolabeled 5-CH3H4PteGlu bound to FBP using everted sacs of rat intestine. In the jejunum at pH 6, transport of 27 nM bound 5-CH3H4PteGlu was linear with time for 30 min of incubation. Transport of 13 nM bound 5-CH3H4PteGlu was higher in the jejunum than in the ileum at both pH 6 (2.1 +/- 0.3 and 0.36 +/- 0.03 pmol/g wet wt/25 min, respectively) and pH 8 (1.9 +/- 0.3 and 0.32 +/- 0.02 pmol/g wet wt/25 min, respectively). In the jejunum, transport of 13 nM bound 5-CH3H4PteGlu at pH 6 was less than transport of an equimolar concentration of free 5-CH3H4PteGlu (2.1 +/- 0.3 and 5.1 +/- 0.5 pmol/g wet wt/25 min, respectively) but was similar at pH 8 (1.9 +/- 0.3 and 2.47 +/- 0.3 pmol/g wet wt/25 min, respectively). In the ileum transport of bound and free 5-CH3H4PteGlu was similar at pH 6 (0.36 +/- 0.03) and 0.41 +/- 0.06 pmol/g wet wt/25 min, respectively) and pH 8 (0.32 +/- 0.02 and 0.43 +/- 0.1 pmol/g wet wt/25 min, respectively). The transport process of bound 5-CH3H4PteGlu in the jejunum was energy, temperature, and Na+ dependent, but not pH dependent, and was competitively inhibited by sulfasalazine. Ninety-two percent of the transport substrate that appeared in the serosal compartment following incubation with bound 5-CH3H4PteGlu was found to be free (unbound) 5-CH3H4PteGlu. These results show that human milk FBP decreases the rate of transport of 5-CH3H4PteGlu in the jejunum and suggest that FBP-bound 5-CH3H4PteGlu may utilize the same transport system as free 5-CH3H4PteGlu. The results also suggest a role for human milk FBP in regulating the nutritional bioavailability of folate.

MeSH Terms (20)

Animals Biological Transport, Active Carrier Proteins Folate Receptors, GPI-Anchored Folic Acid Humans Hydrogen-Ion Concentration Ileum Intestinal Absorption In Vitro Techniques Jejunum Kinetics Methotrexate Milk, Human Milk Proteins Rats Receptors, Cell Surface Sodium Sulfasalazine Temperature

Connections (1)

This publication is referenced by other Labnodes entities:

Links