Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide.

Alam SM, Aussedat B, Vohra Y, Meyerhoff RR, Cale EM, Walkowicz WE, Radakovich NA, Anasti K, Armand L, Parks R, Sutherland L, Scearce R, Joyce MG, Pancera M, Druz A, Georgiev IS, Von Holle T, Eaton A, Fox C, Reed SG, Louder M, Bailer RT, Morris L, Abdool-Karim SS, Cohen M, Liao HX, Montefiori DC, Park PK, Fern√°ndez-Tejada A, Wiehe K, Santra S, Kepler TB, Saunders KO, Sodroski J, Kwong PD, Mascola JR, Bonsignori M, Moody MA, Danishefsky S, Haynes BF
Sci Transl Med. 2017 9 (381)

PMID: 28298421 · PMCID: PMC5562351 · DOI:10.1126/scitranslmed.aai7521

A goal for an HIV-1 vaccine is to overcome virus variability by inducing broadly neutralizing antibodies (bnAbs). One key target of bnAbs is the glycan-polypeptide at the base of the envelope (Env) third variable loop (V3). We have designed and synthesized a homogeneous minimal immunogen with high-mannose glycans reflective of a native Env V3-glycan bnAb epitope (Man-V3). V3-glycan bnAbs bound to Man-V3 glycopeptide and native-like gp140 trimers with similar affinities. Fluorophore-labeled Man-V3 glycopeptides bound to bnAb memory B cells and were able to be used to isolate a V3-glycan bnAb from an HIV-1-infected individual. In rhesus macaques, immunization with Man-V3 induced V3-glycan-targeted antibodies. Thus, the Man-V3 glycopeptide closely mimics an HIV-1 V3-glycan bnAb epitope and can be used to isolate V3-glycan bnAbs.

Copyright © 2017, American Association for the Advancement of Science.

MeSH Terms (16)

Animals Antibodies, Neutralizing Antibody Specificity B-Lymphocytes Cell Lineage Cell Separation Clone Cells Epitopes Glycopeptides HIV-1 HIV Antigens HIV Envelope Protein gp120 Macaca mulatta Molecular Mimicry Protein Domains Protein Multimerization

Connections (1)

This publication is referenced by other Labnodes entities: