Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation.

Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ
Oncotarget. 2016 7 (17): 23096-105

PMID: 27049833 · PMCID: PMC5029613 · DOI:10.18632/oncotarget.8500

Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens.

MeSH Terms (8)

Animals Cells, Cultured Class Ia Phosphatidylinositol 3-Kinase Mice Mice, Knockout Neutrophils Reactive Oxygen Species Signal Transduction

Connections (1)

This publication is referenced by other Labnodes entities: