The Sertoli cell cytoskeleton: a target for toxicant-induced germ cell loss.

Boekelheide K, Neely MD, Sioussat TM
Toxicol Appl Pharmacol. 1989 101 (3): 373-89

PMID: 2690397 · DOI:10.1016/0041-008x(89)90188-9

Numerous studies in recent years have elucidated fundamental properties of axoplasmic structure, biochemistry, and function. The structural role of the cytoskeletal elements, the orientation of MTs within the axon, the phenomenon of MT-dependent transport, and the identity and direction of movement of two MT motors--kinesin and MAP-1C--have been revealed. For many years to come, researchers investigating the structure and function of the Sertoli cell cytoskeleton will be able to adapt techniques gleaned from work on the axonal cytoskeleton. Innovative thinking will be required to apply these techniques to the special circumstances of the male reproductive system; however, the underlying questions are similar. For example, knowledge of several fundamental properties of transport processes in the Sertoli cell would facilitate the toxicologic evaluation of this system. What is the orientation of MTs within the Sertoli cell cytoplasm? Are the fast-growing (+) ends of all MTs in the Sertoli cell cytoplasm directed toward the lumen? This is an important question because the direction of MT-dependent transport involving known MT motors is dependent upon the MT orientation. Which of the Sertoli cell transport pathways are MT-dependent pathways? What are the MT motors involved in these pathways? Ultrastructural examination following exposure to specific cytoskeleton-disrupting agents has highlighted the importance of AFs, IFs, and MTs in the Sertoli cell. Future research will focus on the nature of those molecules which integrate these cytoskeletal components into a dynamic whole, the regulatory systems which control this integration, and the role of an integrated cytoskeleton in Sertoli cell function and testicular homeostasis. Toxicology will be an active participant in this process of scientific discovery. The selective nervous system and testicular toxicants may be useful tools in revealing similarities in the cytoskeletal organization of these apparently disparate organ systems. By searching for common targets in the testis and nervous system, the mechanisms of action of these agents may be more easily, and more confidently, determined.

MeSH Terms (11)

Animals Axons Cell Survival Cytoskeleton Hexanones Humans Ketones Male Microtubules Sertoli Cells Spermatozoa

Connections (1)

This publication is referenced by other Labnodes entities: