Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function.

Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C
EMBO J. 2015 34 (10): 1417-33

PMID: 25828096 · PMCID: PMC4492000 · DOI:10.15252/embj.201490819

Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.

© 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

MeSH Terms (10)

Animals Basic Helix-Loop-Helix Transcription Factors DNA-Binding Proteins Genotype Hepatocyte Nuclear Factor 3-beta Insulin-Secreting Cells Mice Mice, Inbred C57BL Protein Binding Transcription Factors

Connections (1)

This publication is referenced by other Labnodes entities: