Choice of fluid in acute illness: what should be given? An international consensus.

Raghunathan K, Murray PT, Beattie WS, Lobo DN, Myburgh J, Sladen R, Kellum JA, Mythen MG, Shaw AD, ADQI XII Investigators Group
Br J Anaesth. 2014 113 (5): 772-83

PMID: 25326478 · DOI:10.1093/bja/aeu301

Fluid management during critical illness is a dynamic process that may be conceptualized as occurring in four phases: rescue, optimization, stabilization, and de-escalation (mobilization). The selection and administration of resuscitation fluids is one component of this complex physiological sequence directed at restoring depleted intravascular volume. Presently, the selection of i.v. fluid is usually dictated more by local practice patterns than by evidence. The debate on fluid choice has primarily focused on evaluating outcome differences between 'crystalloids vs colloids'. More recently, however, there is interest in examining outcome differences based on the chloride content of crystalloid solutions. New insights into the conventional Starling model of microvascular fluid exchange may explain that the efficacy of colloids in restoring and maintaining depleted intravascular volume is only moderately better than crystalloids. A number of investigator-initiated, high-quality, randomized controlled trials have demonstrated that modest improvements in short-term physiological endpoints with colloids have not translated into better patient-centred outcomes. In addition, there is substantial evidence that certain types of fluids may independently worsen patient-centred outcomes. These include hydroxyethyl starch and albumin solutions in selected patient populations. There is no evidence to support the use of other colloids. The use of balanced salt solutions in preference to 0.9% saline is supported by the absence of harm in large observational studies. However, there is no compelling randomized trial-based evidence demonstrating improved clinical outcomes with the use of balanced salt solutions compared with 0.9% saline at this time.

© The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

MeSH Terms (6)

Acute Disease Critical Care Critical Illness Dialysis Fluid Therapy Humans

Connections (1)

This publication is referenced by other Labnodes entities:

Links