Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

Adal KM, Sidibé D, Ali S, Chaum E, Karnowski TP, Mériaudeau F
Comput Methods Programs Biomed. 2014 114 (1): 1-10

PMID: 24529636 · DOI:10.1016/j.cmpb.2013.12.009

Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

MeSH Terms (6)

Aneurysm Automation Diabetic Retinopathy Fundus Oculi Humans Learning

Connections (1)

This publication is referenced by other Labnodes entities: