High mobility group box 1 (HMGB1) protein in human uterine fluid and its relevance in implantation.

Bhutada S, Basak T, Savardekar L, Katkam RR, Jadhav G, Metkari SM, Chaudhari UK, Kumari D, Kholkute SD, Sengupta S, Sachdeva G
Hum Reprod. 2014 29 (4): 763-80

PMID: 24488797 · DOI:10.1093/humrep/det461

STUDY QUESTION - Does a differential abundance of high mobility group box 1 (HMGB1) protein in uterine fluid (UF) have a functional significance?

SUMMARY ANSWER - In rats, an excess of HMGB1 in UF during the receptive phase is detrimental to pregnancy.

WHAT IS KNOWN ALREADY - The identification of constituents of the human uterine secretome has been a subject of renewed interest, due to the advent of high throughput proteomic technologies. Proteomic-based investigations of human UF have revealed the presence of several proteins such as mucins, host defense proteins S100, heat shock protein 27 and haptoglobin, etc. The present study reports on the presence of HMGB1, a nuclear protein, in human UF. Activated macrophages/monocytes, natural killer cells, mature dendritic cells, pituicytes and erythroleukemic cells are also known to secrete HMGB1. Existing data suggest that extracellular HMGB1 plays a role in inflammation.

STUDY DESIGN, SIZE, DURATION - The human part of this study was cross-sectional in design. UF and endometrial tissues were collected from regularly cycling women in the early secretory (i.e. pre-receptive phase, Day 2 post-ovulation, n = 7) or secretory phase (i.e. receptive phase, Day 6 post-ovulation, n = 7) of their menstrual cycles. Samples were also collected from cycling rats in the proestrous (n = 8) or metestrous (n = 8) phase of their estrous cycles. Uteri were also collected from HMGB1-treated pregnant (n = 7) and untreated pseudo-pregnant (n = 7) rats and from pregnant rats at Day 3-5 post-coitum (p.c.) (n = 18, 3 each for six-time points).

PARTICIPANTS/MATERIALS, SETTING, METHODS - In each group of human samples, four samples were used for isobaric tag for relative and absolute quantification (iTRAQ) analysis and three samples were used for immunoblotting experiments to determine the abundance of HMGB1 in pre-receptive and receptive phase UF samples. HMGB1 levels in rat UF and endometrial tissue samples were estimated by ELISA and immunohistochemical studies, respectively. The expression of inflammation-associated molecules, such as nuclear factor kappa B (NFκB), receptor for advanced glycation end products (RAGEs), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), was analyzed by immunohistochemistry in HMGB1-treated and pseudo-pregnant rats.

MAIN RESULTS AND THE ROLE OF CHANCE - HMGB1 was identified as one of the differentially abundant proteins in the list generated by 8-plex iTRAQ analysis of receptive and pre-receptive phase UF samples. In both humans and rats, secreted and cellular levels of HMGB1 showed a similar pattern, i.e. significantly (P < 0.05) lower abundance in the receptive phase compared with that in the pre-receptive phase. A significant (P < 0.05) decline was also observed in the endometrial expression of HMGB1 on the day of implantation in pregnant rats. Exogenous administration of recombinant HMGB1, on Day 3 p.c., led to pregnancy failure, whereas administration of recombinant leukemia inhibitory factor or saline had no effect on pregnant rats. Further investigations revealed morphological changes in the endometrium, an increase in the expression of luminal epithelial NFκB and significantly (P < 0.05) higher expression levels of endometrial RAGE, TNF-α and IL-6 in HMGB1-treated rats, compared with untreated pseudo-pregnant rats.

LIMITATIONS, REASONS FOR CAUTION - The mechanisms, contributing to a decline in the cellular and extracellular levels of HMGB1 during the receptive phase, remain to be ascertained.

WIDER IMPLICATIONS OF THE FINDINGS - An excess of HMGB1 in the UF may be associated with infertility in women.

MeSH Terms (15)

Animals Bodily Secretions Cell Line Embryo Implantation Endometrium Enzyme-Linked Immunosorbent Assay Female HMGB1 Protein Humans Immunohistochemistry Menstrual Cycle Pregnancy Pregnancy Outcome Rats Uterus

Connections (1)

This publication is referenced by other Labnodes entities: