Model-based correction of tissue compression for tracked ultrasound in soft tissue image-guided surgery.

Pheiffer TS, Thompson RC, Rucker DC, Simpson AL, Miga MI
Ultrasound Med Biol. 2014 40 (4): 788-803

PMID: 24412172 · PMCID: PMC3943567 · DOI:10.1016/j.ultrasmedbio.2013.11.003

Acquisition of ultrasound data negatively affects image registration accuracy during image-guided therapy because of tissue compression by the probe. We present a novel compression correction method that models sub-surface tissue displacement resulting from application of a tracked probe to the tissue surface. Patient landmarks are first used to register the probe pose to pre-operative imaging. The ultrasound probe geometry is used to provide boundary conditions to a biomechanical model of the tissue. The deformation field solution of the model is inverted to non-rigidly transform the ultrasound images to an estimation of the tissue geometry before compression. Experimental results with gel phantoms indicated that the proposed method reduced the tumor margin modified Hausdorff distance (MHD) from 5.0 ± 1.6 to 1.9 ± 0.6 mm, and reduced tumor centroid alignment error from 7.6 ± 2.6 to 2.0 ± 0.9 mm. The method was applied to a clinical case and reduced the tumor margin MHD error from 5.4 ± 0.1 to 2.6 ± 0.1 mm and the centroid alignment error from 7.2 ± 0.2 to 3.5 ± 0.4 mm.

Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

MeSH Terms (14)

Artifacts Brain Neoplasms Computer Simulation Elastic Modulus Hardness Humans Meningioma Models, Biological Phantoms, Imaging Reproducibility of Results Sensitivity and Specificity Surgery, Computer-Assisted Treatment Outcome Ultrasonography

Connections (1)

This publication is referenced by other Labnodes entities: