, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair.

Halvey PJ, Wang X, Wang J, Bhat AA, Dhawan P, Li M, Zhang B, Liebler DC, Slebos RJ
Cancer Res. 2014 74 (1): 387-97

PMID: 24247723 · PMCID: PMC3896054 · DOI:10.1158/0008-5472.CAN-13-2488

A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We used standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biologic replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein false discovery rate of 3.17% across all cell lines. Networks of coexpressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multisystem adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition in RKO cells, as evidenced by increased mobility and invasion properties compared with SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes.

MeSH Terms (7)

Cell Growth Processes Cell Line, Tumor Colorectal Neoplasms DNA Mismatch Repair Humans Proteomics Sequence Analysis, Protein

Connections (4)

This publication is referenced by other Labnodes entities:

Links