Amide proton transfer imaging of the human breast at 7T: development and reproducibility.

Klomp DW, Dula AN, Arlinghaus LR, Italiaander M, Dortch RD, Zu Z, Williams JM, Gochberg DF, Luijten PR, Gore JC, Yankeelov TE, Smith SA
NMR Biomed. 2013 26 (10): 1271-7

PMID: 23559550 · PMCID: PMC3726578 · DOI:10.1002/nbm.2947

Chemical exchange saturation transfer (CEST) can offer information about protons associated with mobile proteins through the amide proton transfer (APT) effect, which has been shown to discriminate tumor from healthy tissue and, more recently, has been suggested as a prognosticator of response to therapy. Despite this promise, APT effects are small (only a few percent of the total signal), and APT imaging is often prone to artifacts resulting from system instability. Here we present a procedure that enables the detection of APT effects in the human breast at 7T while mitigating these issues. Adequate signal-to-noise ratio (SNR) was achieved via an optimized quadrature RF breast coil and 3D acquisitions. To reduce the influence of fat, effective fat suppression schemes were developed that did not degrade SNR. To reduce the levels of ghosting artifacts, dummy scans have been integrated into the scanning protocol. Compared with results obtained at 3T, the standard deviation of the measured APT effect was reduced by a factor of four at 7T, allowing for the detection of APT effects with a standard deviation of 1% in the human breast at 7T. Together, these results demonstrate that the APT effect can be reliably detected in the healthy human breast with a high level of precision at 7T.

Copyright © 2013 John Wiley & Sons, Ltd.

MeSH Terms (13)

Adult Amides Breast Creatine Female Humans Imaging, Three-Dimensional Lipids Magnetic Resonance Imaging Phantoms, Imaging Protons Radio Waves Reproducibility of Results

Connections (4)

This publication is referenced by other Labnodes entities: