GABRB3 mutation, G32R, associated with childhood absence epilepsy alters α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor expression and channel gating.

Gurba KN, Hernandez CC, Hu N, Macdonald RL
J Biol Chem. 2012 287 (15): 12083-97

PMID: 22303015 · PMCID: PMC3320954 · DOI:10.1074/jbc.M111.332528

A GABA(A) receptor β3 subunit mutation, G32R, has been associated with childhood absence epilepsy. We evaluated the possibility that this mutation, which is located adjacent to the most N-terminal of three β3 subunit N-glycosylation sites, might reduce GABAergic inhibition by increasing glycosylation of β3 subunits. The mutation had three major effects on GABA(A) receptors. First, coexpression of β3(G32R) subunits with α1 or α3 and γ2L subunits in HEK293T cells reduced surface expression of γ2L subunits and increased surface expression of β3 subunits, suggesting a partial shift from ternary αβ3γ2L receptors to binary αβ3 and homomeric β3 receptors. Second, β3(G32R) subunits were more likely than β3 subunits to be N-glycosylated at Asn-33, but increases in glycosylation were not responsible for changes in subunit surface expression. Rather, both phenomena could be attributed to the presence of a basic residue at position 32. Finally, α1β3(G32R)γ2L receptors had significantly reduced macroscopic current density. This reduction could not be explained fully by changes in subunit expression levels (because γ2L levels decreased only slightly) or glycosylation (because reduction persisted in the absence of glycosylation at Asn-33). Single channel recording revealed that α1β3(G32R)γ2L receptors had impaired gating with shorter mean open time. Homology modeling indicated that the mutation altered salt bridges at subunit interfaces, including regions important for subunit oligomerization. Our results suggest both a mechanism for mutation-induced hyperexcitability and a novel role for the β3 subunit N-terminal α-helix in receptor assembly and gating.

MeSH Terms (19)

Amino Acid Sequence Cell Membrane Epilepsy, Absence gamma-Aminobutyric Acid Glycosylation HEK293 Cells Humans Membrane Potentials Molecular Sequence Data Mutation, Missense Patch-Clamp Techniques Protein Binding Protein Interaction Domains and Motifs Protein Multimerization Protein Structure, Quaternary Protein Structure, Secondary Receptors, GABA-A Sequence Alignment Synaptic Transmission

Connections (1)

This publication is referenced by other Labnodes entities: