Epoxyeicosatrienoic acids activate Na+/H+ exchange and are mitogenic in cultured rat glomerular mesangial cells.

Harris RC, Homma T, Jacobson HR, Capdevila J
J Cell Physiol. 1990 144 (3): 429-37

PMID: 2167900 · DOI:10.1002/jcp.1041440310

The present study examined responses of cultured rat glomerular mesangial cells to exogenous exposure of epoxyeicosatrienoic acids (EET's), products of cytochrome P450 epoxygenase. One day after administration of 8,9- or 14,15-EET, cultured rat mesangial cells demonstrated significant increases in [3H]thymidine incorporation (10(-7) M 14,15-EET: 120 +/- 7% of control; n = 6; P less than 0.025; 10(-6) M 14,15-EET: 145 +/- 10%; n = 20; P less than 0.0005; 10(-6) M 8,9-EET: 167 +/- 31%; n = 9; P less than 0.05), which was not affected by addition of the cyclooxygenase inhibitor indomethacin. In addition to stimulation of [3H]thymidine incorporation, the epoxides stimulated mesangial cell proliferation. 14,15-EET administration induced intracellular alkalinization of 0.2-0.3 pH units, which was prevented by extracellular Na+ removal and blunted by amiloride (0.5 mM). Following intracellular acidification with NH4Cl addition and removal, greater than 85% of 3 mM 22Na uptake into mesangial cells was inhibited by 1 mM amiloride, indicating Na+/H+ exchange. Under these conditions, 14,15-EET stimulated Na+/H+ exchange by 42% and 8,9-EET stimulated Na+/H+ exchange by 59%. Neither protein kinase C depletion nor addition of the protein kinase C inhibitor, staurosporine, affected this stimulation. In [3H]myo-inositol loaded mesangial cells, no significant stimulation of phosphoinositide hydrolysis was detected in response to administration of 14,15-EET. Twenty-four hours after addition of [14C]14,15-EET, greater than 90% was preferentially esterified to cellular lipids, with predominant incorporation into phosphatidylinositol, phosphatidylethanolamine, and diacylglycerol. Thus, these results demonstrate epoxyeicosatrienoic acids stimulate Na+/H+ exchange and mitogenesis in mesangial cells. These effects do not appear to be mediated via phospholipase C activation. In addition, 14,15-EET was selectively incorporated into cellular lipids known to mediate signal transduction. These observations extend the potential biologic roles of c-P450 arachidonate metabolites to include stimulation of cell proliferation and suggest a role for these compounds in vascular and renal injury.

MeSH Terms (12)

8,11,14-Eicosatrienoic Acid Animals Arachidonic Acids Carrier Proteins Cell Division Cells, Cultured Fatty Acids, Unsaturated Glomerular Mesangium Mitogens Rats Sodium-Hydrogen Exchangers Thymidine

Connections (2)

This publication is referenced by other Labnodes entities:

Links