Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes.

Su Z, Han L, Zhao Z
Epigenetics. 2011 6 (2): 134-40

PMID: 20962593 · PMCID: PMC3278781 · DOI:10.4161/epi.6.2.13875

DNA methylation is one of the most important heritable epigenetic modifications of the genome and is involved in the regulation of many cellular processes. Aberrant DNA methylation has been frequently reported to influence gene expression and subsequently cause various human diseases, including cancer. Recent rapid advances in next-generation sequencing technologies have enabled investigators to profile genome methylation patterns at single-base resolution. Remarkably, more than 20 eukaryotic methylomes have been generated thus far, with a majority published since November 2009. Analysis of this vast amount of data has dramatically enriched our knowledge of biological function, conservation and divergence of DNA methylation in eukaryotes. Even so, many specific functions of DNA methylation and their underlying regulatory systems still remain unknown to us. Here, we briefly introduce current approaches for DNA methylation profiling and then systematically review the features of whole genome DNA methylation patterns in eight animals, six plants and five fungi. Our systematic comparison provides new insights into the conservation and divergence of DNA methylation in eukaryotes and their regulation of gene expression. This work aims to summarize the current state of available methylome data and features informatively.

MeSH Terms (15)

Animals CpG Islands Cytosine DNA Methylation Embryonic Stem Cells Epigenomics Eukaryota Evolution, Molecular Fungi Genome Humans Neoplasms Plants Sequence Analysis, DNA Sulfites

Connections (1)

This publication is referenced by other Labnodes entities:

Links