Setting the optimal erythrocyte protoporphyrin screening decision threshold for lead poisoning: a decision analytic approach.

DeBaun MR, Sox HC
Pediatrics. 1991 88 (1): 121-31

PMID: 2057248

Erythrocyte protoporphyrin (EP) was introduced in the 1970s as an inexpensive screening test for lead poisoning. As greater knowledge of lead poisoning has accumulated, the recommended EP level at which further evaluation for lead poisoning should be initiated has been lowered from greater than or equal to 50 micrograms/dL to greater than or equal to 35 micrograms/dL. The purpose of this study was to evaluate the utility of this EP threshold. A receiver operator characteristic curve was constructed to assess the relationship between the true-positive rate and false-positive rate of EP at various decision thresholds. The receiver operator characteristic curve was constructed with data from the second National Health and Nutrition Examination Survey from 1976 to 1980, which included 2673 children 6 years of age or younger who had both blood lead and EP level determinations. Decision analysis was then used to determine the optimal EP decision threshold for detecting a blood lead level greater than or equal to 25 micrograms/dL. The receiver operator characteristic curve demonstrated that EP is a poor predictor of a blood lead level greater than or equal to 25 micrograms/dL. At the currently recommended EP decision threshold of 35 micrograms/dL, the true-positive rates and false-positive rates of EP are 0.23 and 0.04, respectively. As a result of the inadequate performance of EP screening for lead poisoning, when the prevalence of lead poisoning is greater than 8%, there is no EP decision threshold that optimizes the relationship between the cost of screening normal children and the benefit of detecting lead-poisoned children. Erythrocyte protoporphyrin measurement is not sufficiently sensitive to be recommended uniformly as a screening test for lead poisoning.

MeSH Terms (13)

Child Child, Preschool Costs and Cost Analysis Decision Support Techniques Erythrocytes False Negative Reactions False Positive Reactions Humans Lead Poisoning Maximum Allowable Concentration Protoporphyrins ROC Curve United States

Connections (2)

This publication is referenced by other Labnodes entities:

Links