Suppressed accumulation of cerebral amyloid {beta} peptides in aged transgenic Alzheimer's disease mice by transplantation with wild-type or prostaglandin E2 receptor subtype 2-null bone marrow.

Keene CD, Chang RC, Lopez-Yglesias AH, Shalloway BR, Sokal I, Li X, Reed PJ, Keene LM, Montine KS, Breyer RM, Rockhill JK, Montine TJ
Am J Pathol. 2010 177 (1): 346-54

PMID: 20522650 · PMCID: PMC2893677 · DOI:10.2353/ajpath.2010.090840

A complex therapeutic challenge for Alzheimer's disease (AD) is minimizing deleterious aspects of microglial activation while maximizing beneficial actions, including phagocytosis/clearance of amyloid beta (Abeta) peptides. One potential target is selective suppression of microglial prostaglandin E(2) receptor subtype 2 (EP2) function, which influences microglial phagocytosis and elaboration of neurotoxic cytokines. To test this hypothesis, we transplanted bone marrow cells derived from wild-type mice or mice homozygous deficient for EP2 (EP2(-/-)) into lethally irradiated 5-month-old wild-type or APPswe-PS1DeltaE9 double transgenic AD mouse model recipients. We found that cerebral engraftment by bone marrow transplant (BMT)-derived wild-type or EP2(-/-) microglia was more efficient in APPswe-PS1DeltaE9 than in wild-type mice, and APPswe-PS1DeltaE9 mice that received EP2(-/-) BMT had increased cortical microglia compared with APPswe-PS1DeltaE9 mice that received wild-type BMT. We found that myeloablative irradiation followed by bone marrow transplant-derived microglia engraftment, rather than cranial irradiation or BMT alone, was responsible for the approximate one-third reduction in both Abeta plaques and potentially more neurotoxic soluble Abeta species. An additional 25% reduction in cerebral cortical Abeta burden was achieved in mice that received EP2(-/-) BMT compared with mice that received wild-type BMT. Our results provide a foundation for an adult stem cell-based therapy to suppress soluble Abeta peptide and plaque accumulation in the cerebrum of patients with AD.

MeSH Terms (11)

Alzheimer Disease Amyloid beta-Peptides Animals Bone Marrow Transplantation Cerebral Cortex Humans Male Mice Mice, Inbred C57BL Mice, Transgenic Receptors, Prostaglandin E, EP2 Subtype

Connections (1)

This publication is referenced by other Labnodes entities:

Links