, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.

Choi L, Chen KY, Acra SA, Buchowski MS
J Appl Physiol (1985). 2010 108 (2): 314-27

PMID: 19959770 · PMCID: PMC2822669 · DOI:10.1152/japplphysiol.00374.2009

Movement sensing using accelerometers is commonly used for the measurement of physical activity (PA) and estimating energy expenditure (EE) under free-living conditions. The major limitation of this approach is lack of accuracy and precision in estimating EE, especially in low-intensity activities. Thus the objective of this study was to investigate benefits of a distributed lag spline (DLS) modeling approach for the prediction of total daily EE (TEE) and EE in sedentary (1.0-1.5 metabolic equivalents; MET), light (1.5-3.0 MET), and moderate/vigorous (> or = 3.0 MET) intensity activities in 10- to 17-year-old youth (n = 76). We also explored feasibility of the DLS modeling approach to predict physical activity EE (PAEE) and METs. Movement was measured by Actigraph accelerometers placed on the hip, wrist, and ankle. With whole-room indirect calorimeter as the reference standard, prediction models (Hip, Wrist, Ankle, Hip+Wrist, Hip+Wrist+Ankle) for TEE, PAEE, and MET were developed and validated using the fivefold cross-validation method. The TEE predictions by these DLS models were not significantly different from the room calorimeter measurements (all P > 0.05). The Hip+Wrist+Ankle predicted TEE better than other models and reduced prediction errors in moderate/vigorous PA for TEE, MET, and PAEE (all P < 0.001). The Hip+Wrist reduced prediction errors for the PAEE and MET at sedentary PA (P = 0.020 and 0.021) compared with the Hip. Models that included Wrist correctly classified time spent at light PA better than other models. The means and standard deviations of the prediction errors for the Hip+Wrist+Ankle and Hip were 0.4 +/- 144.0 and 1.5 +/- 164.7 kcal for the TEE, 0.0 +/- 84.2 and 1.3 +/- 104.7 kcal for the PAEE, and -1.1 +/- 97.6 and -0.1 +/- 108.6 MET min for the MET models. We conclude that the DLS approach for accelerometer data improves detailed EE prediction in youth.

MeSH Terms (23)

Adolescent Aging Algorithms Ankle Body Height Body Weight Calorimetry, Indirect Child Energy Metabolism Female Forecasting Hip Humans Male Metabolism Models, Statistical Monitoring, Physiologic Motor Activity Nonlinear Dynamics Regression Analysis Reproducibility of Results Wakefulness Wrist

Connections (3)

This publication is referenced by other Labnodes entities:

Links