The aurora kinase A regulates GSK-3beta in gastric cancer cells.

Dar AA, Belkhiri A, El-Rifai W
Oncogene. 2009 28 (6): 866-75

PMID: 19060929 · PMCID: PMC2642527 · DOI:10.1038/onc.2008.434

Aurora kinase A (AURKA) is located at 20q13, a region that is frequently amplified in gastric cancer. In this study, we have investigated the role of AURKA in regulating glycogen synthase kinase (GSK)-3beta and beta-catenin/TCF complex in gastric cancer cells. Our results demonstrate a significant increase in the phosphorylation of GSK-3beta at Ser 9 following the overexpression of AURKA in AGS cells. The immunoprecipitation with antibodies specific for AURKA and GSK-3beta indicated that the two proteins coexist in the same protein complex. The recombinant human AURKA protein phosphorylated the GSK-3beta protein at Ser 9 in a concentration-dependent manner, in vitro. The phosphorylation of beta-catenin (Ser33/37/Thr41) by GSK-3beta is known to target beta-catenin towards degradation. In line with our findings, the increase in phospho-GSK-3beta level was accompanied by a significant decrease in beta-catenin phosphorylation (Ser33/37/Thr41) and accumulation of beta-catenin protein. The knockdown of AURKA reversed the phosphorylation of GSK-3beta and the beta-catenin protein levels. The immunofluorescence analysis demonstrated colocalization of AURKA and GSK-3beta proteins and a significant increase in the nuclear beta-catenin levels in cells overexpressing AURKA. The beta-catenin/TCF transcription activity was measured using the pTopFlash and its mutant pFopFlash luciferase reporter vectors. Indeed, AURKA overexpression led to a significant increase in the pTopFlash reporter activity, whereas kinase dead AURKA mutant (D274A) had no effect. Consistent with these findings, we detected a significant mRNA up-regulation of several direct targets of the beta-catenin/TCF transcription complex (cyclin D1, c-MYC, c-MYC-binding protein, CLDN1, FGF18 and vascular endothelial growth factor), and a two-fold increase in the proliferation rate in AURKA overexpressing cells. We conclude that the AURKA/GSK-3beta interaction is important in regulating beta-catenin, underscoring a novel oncogenic potential for AURKA in gastric tumorigenesis.

MeSH Terms (18)

Active Transport, Cell Nucleus Aurora Kinase A Aurora Kinases beta Catenin Cell Line, Tumor Cell Separation Flow Cytometry Gene Expression Regulation, Neoplastic Glycogen Synthase Kinase 3 Glycogen Synthase Kinase 3 beta Humans Microscopy, Fluorescence Models, Biological Phosphorylation Protein-Serine-Threonine Kinases Recombinant Proteins RNA, Small Interfering Stomach Neoplasms

Connections (1)

This publication is referenced by other Labnodes entities: