Time-dependent biphasic regulation of Na+/K+/Cl- cotransport in rat glomerular mesangial cells.

Homma T, Harris RC
J Biol Chem. 1991 266 (21): 13553-9

PMID: 1856192

Time-dependent regulation of loop diuretic-sensitive Na+/K+/Cl- cotransport and [3H]bumetanide binding was investigated in cultured rat glomerular mesangial cells. Angiotensin II or epidermal growth factor induced stimulation of Na+/K+/Cl- cotransport within 5 min, with a return to the control values by 30 min. Treatment of cells with phorbol 12-myristate 13-acetate (0.1 microM) (PMA), the calcium ionophore A23187 (1 microM), or the combination of 5 mM NaF and 10 microM AlCl3 produced a transient stimulation of Na+/K+/Cl- cotransport in 5-10 min to 148, 135, and 163% of control, respectively, which was followed by a progressive decrease to 34, 64, and 20% of the base-line activity, respectively, by 60 min. Exposure to cyclic 8-bromo-AMP (0.1 mM) or to forskolin (1 microM) and isobutylmethylxanthine (0.1 mM) caused a maximal inhibition of the cotransport in 5 min to 79 and 60% of control, respectively, with a subsequent gradual increase to 137 and 164% of the base-line activity, respectively, by 60 min. The effects of PMA, forskolin, and cyclic 8-bromo-AMP were concentration-dependent. In order to characterize further the alterations in the cotransport activity, binding of [3H]bumetanide was determined. Saturation binding analyses showed that the late inhibition of the cotransport by PMA and stimulation by forskolin were associated with a significant decrease and increase, respectively, in Bmax, with no significant changes in binding affinity. Correlations between changes in the cotransport activity and [3H]bumetanide binding were also observed in cells treated with cyclic 8-bromo-AMP or with NaF and AlCl3. Incubation of cells in Cl- or Na+ free solution greater than or equal to 60 min resulted in an increase in both the cotransport activity and [3H]bumetanide binding. These observations indicate that, in glomerular mesangial cells, persistent stimulation of second messengers that regulate the cotransporter induces a time-dependent, biphasic regulation of Na+/K+/Cl- cotransport and that the regulation occurring after greater than or equal to 60 min of treatment is primarily due to changes in the number of the active cotransport sites. Because long term removal of the transported ions also increases the number of active cotransport sites, these results suggest that alterations in intracellular ionic homeostasis may also mediate cotransport activity.

MeSH Terms (17)

8-Bromo Cyclic Adenosine Monophosphate Aluminum Aluminum Chloride Aluminum Compounds Animals Biological Transport Bumetanide Calcimycin Chlorides Colforsin Glomerular Mesangium In Vitro Techniques Potassium Rats Sodium Sodium Fluoride Tetradecanoylphorbol Acetate

Connections (2)

This publication is referenced by other Labnodes entities:

Links