Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent.

Matsuda JJ, Filali MS, Volk KA, Collins MM, Moreland JG, Lamb FS
Am J Physiol Cell Physiol. 2008 294 (1): C251-62

PMID: 17977943 · DOI:10.1152/ajpcell.00338.2007

ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl(-)/H(+) antiporters (39, 44). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by -48.3 +/- 2.5 mV per 10-fold (decade) change in extracellular Cl(-) concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a -58.4 mV/decade shift at 22 degrees C. Manipulation of extracellular pH (6.35-8.2) altered reversal potential by 10.2 +/- 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl(-)/H(+) antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl(-) concentration that averaged -60 +/- 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.

MeSH Terms (13)

Cell Line Chloride Channels Chlorides Glutamic Acid Humans Hydrogen-Ion Concentration Membrane Potentials Mutation Phloretin Recombinant Fusion Proteins Tamoxifen Time Factors Transfection

Connections (1)

This publication is referenced by other Labnodes entities: