Absolute and relative contributions of BOLD effects to the muscle functional MRI signal intensity time course: effect of exercise intensity.

Damon BM, Wadington MC, Hornberger JL, Lansdown DA
Magn Reson Med. 2007 58 (2): 335-45

PMID: 17654591 · PMCID: PMC4440487 · DOI:10.1002/mrm.21319

The time course of exercise-induced T(2)-weighted signal intensity (SI) changes contains an initial rise, early dip, and secondary rise. The purposes of this study were to test the hypothesis that the secondary rise occurs earlier during more intense contractions, and to determine the contribution of BOLD contrast to the SI changes. Eight subjects performed 90-s isometric dorsiflexion contractions at 30% and 60% of maximum voluntary contraction (MVC) while T(2)-weighted (TR/TE = 4000 ms/35 ms) images were acquired and total hemoglobin ([THb]) and oxy-Hb saturation (%HbO(2)) were measured. At 30% MVC, [THb] remained constant and %HbO(2) decreased from 66.3% (standard error [SEM] = 2.6%) to 32.4% (SEM = 6.4%). At t = 88 s, SI increased by approximately 8% and was greater than at t = 8 and 56 s. At 60% MVC, [THb] remained constant and %HbO(2) decreased from 70.2% (SEM = 2.3%) to 40.4% (SEM = 5.4%). SI increased by approximately 17% and at t = 56 and 88 s was greater than at t = 8 and 20 s. The absolute contribution of calculated BOLD effects was -1% at 30% and 60% MVC. The relative contribution was greater at 30% than at 60% MVC (up to -26% and -10%, respectively). We conclude that the secondary rise occurs earlier at 60% MVC and that the relative contribution of BOLD effects is greater during less intense contractions.

MeSH Terms (16)

Adult Analysis of Variance Exercise Female Hemoglobins Humans Image Processing, Computer-Assisted Linear Models Magnetic Resonance Imaging Male Muscle, Skeletal Muscle Contraction Oximetry Oxygen Consumption Physical Exertion Time Factors

Connections (1)

This publication is referenced by other Labnodes entities: