In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.

Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N
J Biomed Opt. 2007 12 (2): 024014

PMID: 17477729 · PMCID: PMC2743958 · DOI:10.1117/1.2717503

Multiphoton fluorescence lifetime imaging microscopy (FLIM) is a noninvasive, cellular resolution, 3-D functional imaging technique. We investigate the potential for in vivo precancer diagnosis with metabolic imaging via multiphoton FLIM of the endogenous metabolic cofactor nicotinamide adenine dinucleotide (NADH). The dimethylbenz[alpha]anthracene (DMBA)-treated hamster cheek pouch model of oral carcinogenesis and MCF10A cell monolayers are imaged using multiphoton FLIM at 780-nm excitation. The cytoplasm of normal hamster cheek pouch epithelial cells has short (0.29+/-0.03 ns) and long lifetime components (2.03+/-0.06 ns), attributed to free and protein-bound NADH, respectively. Low-grade precancers (mild to moderate dysplasia) and high-grade precancers (severe dysplasia and carcinoma in situ) are discriminated from normal tissues by their decreased protein-bound NADH lifetime (p<0.05). Inhibition of cellular glycolysis and oxidative phosphorylation in cell monolayers produces an increase and decrease, respectively, in the protein-bound NADH lifetime (p<0.05). Results indicate that the decrease in protein-bound NADH lifetime with dysplasia is due to a shift from oxidative phosphorylation to glycolysis, consistent with the predictions of neoplastic metabolism. We demonstrate that multiphoton FLIM is a powerful tool for the noninvasive characterization and detection of epithelial precancers in vivo.

MeSH Terms (10)

Animals Biomarkers, Tumor Cell Line Cell Line, Tumor Cricetinae Microscopy, Fluorescence, Multiphoton Mouth Mucosa Mouth Neoplasms NAD Precancerous Conditions

Connections (1)

This publication is referenced by other Labnodes entities:

Links