Transport and metabolism of glucose in an insulin-secreting cell line, beta TC-1.

Whitesell RR, Powers AC, Regen DM, Abumrad NA
Biochemistry. 1991 30 (49): 11560-6

PMID: 1747375 · DOI:10.1021/bi00113a011

Kinetic characteristics of glucose transport and glucose phosphorylation were studied in the islet cell line beta TC-1 to explore the roles of these processes in determining the dependence of glucose metabolism and insulin secretion on external glucose. The predominant glucose transporter present was the rat brain/erythrocyte type (Glut1), as determined by RNA and immunoblot analysis. The liver/islet glucose transporter (Glut2) RNA was not detected. The functional parameters of zero-trans glucose entry were Km = 9.5 +/- 2 mM and Vmax = 15.2 +/- 2 nmol min-1 (microL of cell water)-1. Phosphorylation kinetics of two hexokinase activities were characterized in situ. A low-Km (0.036 mM) hexokinase with a Vmax of 0.40 nmol min-1 (microL of cell water)-1 was present along with a high-Km (10 mM) hexokinase, which appeared to conform to a cooperative model with a Hill coefficient of about 1.4 and a Vmax of 0.3 nmol min-1 (microL of cell water)-1. Intracellular glucose at steady state was about 80% of the extracellular glucose from 3 to 15 mM, and transport did not limit metabolism in this range. In this static (nonperifusion) system, 2-3 times more immunoreactive insulin was secreted into the medium at 15 mM glucose than at 3 mM. The dependence of insulin secretion on external glucose roughly paralleled the dependence of glucose metabolism on external glucose. Simulations with a model demonstrated the degree to which changes in transport activity would affect intracellular glucose levels and the rate of the high-Km hexokinase (with the potential to affect insulin release).

MeSH Terms (16)

Animals Biological Transport Blotting, Northern Cell Line Extracellular Space Glucose Glycolysis GTP-Binding Proteins Insulin Insulinoma Insulin Secretion Intracellular Fluid Kinetics Mice Monosaccharide Transport Proteins Phosphorylation

Connections (1)

This publication is referenced by other Labnodes entities:

Links