Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals.

Zhang G, Kernan KA, Collins SJ, Cai X, López-Guisa JM, Degen JL, Shvil Y, Eddy AA
J Am Soc Nephrol. 2007 18 (3): 846-59

PMID: 17267741 · DOI:10.1681/ASN.2006080886

Plasminogen (Plg) activator inhibitor-1 (PAI-1) is an important fibrosis-promoting molecule. Whether this effect can be attributed to PAI-1's activity as an inhibitor of plasmin generation is debated. This study was designed to investigate the role of Plg in renal fibrosis using in vivo and in vitro approaches. Plg-deficient (Plg-/-) and wild-type (Plg+/+) C57BL/6 mice were subjected to unilateral ureteral obstruction or sham surgery (n = 8/group; sham, days 3, 7, 14, and 21). Plg deficiency was confirmed by the absence of Plg mRNA, protein, and plasmin activity. After 21 d of unilateral ureteral obstruction, total kidney collagen was significantly reduced by 35% in the Plg-/- mice. Epithelial-to-mesenchymal transition (EMT), as typified by tubular loss of E-cadherin and acquisition of alpha-smooth muscle actin, was also significantly reduced in Plg-/- mice, 76% and 50%, respectively. Attenuation of EMT and fibrosis severity in the Plg-/- mice was associated with significantly lower levels of phosphorylated extracellular signal-regulated kinase (ERK) and active TGF-beta. In vitro, addition of plasmin (20 microg/ml) to cultures of murine tubular epithelial cells initiated ERK phosphorylation within minutes, followed by phenotypic transition to fibroblast-specific protein-1+, alpha-smooth muscle actin+, fibronectin-producing fibroblast-like cells. Both plasmin-induced ERK activation and EMT were significantly blocked in vitro by the protease-activated receptor-1 (PAR-1) silencing RNA; by pepducin, a specific anti-PAR-1 signaling peptide; and by the ERK kinase inhibitor UO126. Plasmin-induced ERK phosphorylation was enhanced in PAR-1-overexpressing tubular cells. These findings support important profibrotic roles for plasmin that include PAR-1-dependent ERK signaling and EMT induction.

MeSH Terms (25)

Actins Animals Butadienes Cadherins Cell Movement Collagen Disease Models, Animal Enzyme Inhibitors Extracellular Signal-Regulated MAP Kinases Female Fibrinolysin Fibrosis Kidney Kidney Diseases Male Mice Mice, Inbred C57BL Mice, Knockout Nitriles Phosphorylation Plasminogen Activator Inhibitor 1 Receptor, PAR-1 Signal Transduction Transforming Growth Factor beta Ureteral Obstruction

Connections (1)

This publication is referenced by other Labnodes entities: