Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR.

Barnett JM, McCollum GW, Fowler JA, Duan JJ, Kay JD, Liu RQ, Bingaman DP, Penn JS
Invest Ophthalmol Vis Sci. 2007 48 (2): 907-15

PMID: 17251494 · PMCID: PMC2614400 · DOI:10.1167/iovs.06-0082

PURPOSE - The efficacy of three matrix metalloproteinase (MMP) inhibitors with various selectivities (Ro-31-9790, AG3340, and DPC-A37668) was investigated in a rat model of retinopathy of prematurity, to examine the roles of MMP-2 and -9 in retinal neovascularization. The susceptibilities of MMP-2(-/-) and -9(-/-) mice to preretinal neovascularization were investigated in a mouse model of oxygen-induced retinopathy.

METHODS - Sprague-Dawley newborn rats were exposed to alternating episodes of 50% and 10% oxygen (variable oxygen exposure) to induce retinal neovascularization. Three MMP inhibitors with various selectivity profiles were administered to variable oxygen-exposed rats via local or systemic routes. Antineovascular efficacy was determined in drug-treated versus vehicle-treated rat pups by computerized imaging of adenosine diphosphatase (ADPase)-stained retinal flatmounts. Wild-type C57BL/6J and isogenic MMP-2(-/-) and -9(-/-) mice were exposed to 75% oxygen followed by normoxia. The mice were killed immediately before or after the normoxic exposure, and eyes were either harvested for retinal dissection and flatmounting or were paraffin embedded and sectioned. Retinal vascular area and retinal neovascularization were assessed by adenosine diphosphatase staining of retinal flatmounts and by counting preretinal nuclei of hematoxylin and eosin-stained retinal sections, respectively.

RESULTS - Ro-31-9790, AG3340, and DPC-A37668 had no effect on normal development of the rat retinal vasculature, regardless of dose or route of administration. Intravitreal injection of Ro-31-9790 (broad-spectrum) immediately after variable-oxygen exposure and 2 days after exposure resulted in 78% and 82% inhibition of retinal neovascularization, respectively. AG3340 (MMP-2- and -9-selective inhibitor) and DPC-A37668 (MMP-2-selective inhibitor) resulted in 65% and 52% inhibition, respectively, when administered by intravitreal injection immediately after variable-oxygen exposure. Intraperitoneal injection of 5, 15, and 50 mg/mL AG3340 or DPC-A37668 for 6 days after variable oxygen exposure resulted in 22% to 39% and 0% to 31% inhibition of neovascularization, respectively. AG3340 and DPC-A37668 administered by oral gavage at doses of 3, 10, or 30 mg/mL provided up to 42% and 86% inhibition of neovascularization, respectively. The average vascular areas of retinas from MMP-2(-/-) or -9(-/-) mice at postnatal day 12 were not significantly different from the wild-type control. There was a 75% (P < 0.001) and 44% (P < 0.01) reduction in preretinal neovascularization in oxygen-exposed MMP-2(-/-) and -9(-/-) mice at postnatal day 19, respectively, compared with wild-type control mice.

CONCLUSIONS - The results of this study suggest that MMP-2 plays a predominant role in retinal angiogenesis in both the mouse and rat models of oxygen-induced retinopathy. Furthermore, MMP-2 inhibition may be a viable therapeutic approach for ocular diseases characterized by retinal neovascularization.

MeSH Terms (24)

Animals Animals, Newborn Apyrase Disease Models, Animal Enzyme Inhibitors Gene Silencing Humans Hydroxamic Acids Infant, Newborn Injections Matrix Metalloproteinase 2 Matrix Metalloproteinase 9 Matrix Metalloproteinase Inhibitors Mice Mice, Inbred C57BL Organic Chemicals Oxygen Pyridines Rats Rats, Sprague-Dawley Retina Retinal Neovascularization Retinopathy of Prematurity Vitreous Body

Connections (2)

This publication is referenced by other Labnodes entities:

Links