Interaction of gut and liver in nitrogen metabolism during exercise.

Wasserman DH, Geer RJ, Williams PE, Becker T, Lacy DB, Abumrad NN
Metabolism. 1991 40 (3): 307-14

PMID: 1672034 · DOI:10.1016/0026-0495(91)90115-d

The role of the gut and liver in nitrogen metabolism was studied during rest, 150 minutes of moderate-intensity treadmill exercise, and 90 minutes of recovery in 18 hour-fasted dogs (n = 6). Dogs underwent surgery 16 days before an experiment for implantation of catheters in a carotid artery and in the portal and hepatic veins, and Doppler flow cuffs on the hepatic artery and portal vein. Arterial glutamine, alanine, and alpha-amino nitrogen (AAN) levels decreased gradually with exercise (P less than .05), while arterial glutamate, NH3, and urea were unchanged. Net gut glutamine uptake was 1.3 +/- 0.5 mumol/kg.min at rest, and increased transiently to 2.5 +/- 0.3 mumol/kg.min at 60 minutes of exercise (P less than .05) as gut extraction increased. Net hepatic glutamine uptake was 0.6 +/- 0.4 mumol/kg.min at rest, and increased to 3.4 +/- 0.6 and 2.6 +/- 0.5 mumol/kg.min after 60 and 150 minutes of exercise (P less than .05) as hepatic extraction increased. Net gut glutamate and NH3 output both increased transiently with exercise (P less than .05). These increases were matched by parallel increments in the net hepatic uptakes of these compounds. Alanine output by the gut and uptake by the liver were unchanged with exercise. Net gut AAN output was -2.1 +/- 1.8 mumol/kg.min at rest (uptake occurred), and increased transiently to 11.2 +/- 3.5 mumol/kg.min after 30 minutes of exercise (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH Terms (16)

Alanine Ammonia Animals Dogs Glutamates Glutamic Acid Glutamine Hepatic Artery Intestinal Mucosa Liver Nitrogen Physical Exertion Portal Vein Regional Blood Flow Splanchnic Circulation Urea

Connections (1)

This publication is referenced by other Labnodes entities: