Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.

Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS, Wilkes GL, Beckman EJ, Hollinger JO
Acta Biomater. 2005 1 (4): 471-84

PMID: 16701828 · DOI:10.1016/j.actbio.2005.02.007

Many polyurethane elastomers display excellent mechanical properties and adequate biocompatibility. However, many medical-grade polyurethanes are prepared from aromatic diisocyanates and can degrade in vivo to carcinogenic aromatic diamines, although the question of whether the concentrations of these harmful degradation products attain physiologically relevant levels is currently unresolved and strongly debated. It is therefore desirable to synthesize new medical-grade polyurethanes from less toxic aliphatic diisocyanates. In this paper, biocompatible segmented polyurethane elastomers were synthesized from aliphatic diisocyanates (1,4-diisocyanatobutane (BDI) and lysine methyl ester diisocyanate (LDI)), novel diurea diol chain extenders based on tyrosine and tyramine, and a model poly(ethylene glycol) (PEG) diol soft segment. The objectives were to design a hard segment similar in structure to that of MDI-based polyurethanes and also investigate the effects of systematic changes in structure on mechanical and biological properties. The non-branched, symmetric polyurethane prepared from BDI and a tyramine-based chain extender had the highest modulus at 37 degrees C. Introduction of symmetric short-chain branches (SCBs) incorporated in the tyrosine-based chain extender lowered the modulus by an order of magnitude. Polyurethanes prepared from LDI were soft polymers that had a still lower modulus due to the asymmetric SCBs that hindered hard segment packing. Polyurethanes prepared from tyramine and tyrosine chain extenders thermally degraded at temperatures ranging from 110 to 150 degrees C, which are lower than that reported previously for phenyl urethanes. All four polyurethanes supported the attachment, proliferation, and high viability of MG-63 human osteoblast-like cells in vitro. Therefore, the non-cytotoxic chemistry of these polyurethanes make them good candidates for further development as biomedical implants.

MeSH Terms (12)

Biocompatible Materials Cell Culture Techniques Cell Line, Tumor Cell Proliferation Cell Survival Cross-Linking Reagents Humans Isocyanates Osteosarcoma Polyurethanes Tissue Engineering Urea

Connections (2)

This publication is referenced by other Labnodes entities:

Links