A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators.

Hemstapat K, de Paulis T, Chen Y, Brady AE, Grover VK, Alagille D, Tamagnan GD, Conn PJ
Mol Pharmacol. 2006 70 (2): 616-26

PMID: 16645124 · DOI:10.1124/mol.105.021857

We recently reported a novel class of compounds, represented by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CD-PPB), that act as positive allosteric modulators (potentiators) of metabotropic glutamate receptor (mGluR) subtype 5. Studies of CDPPB analogs revealed that some compounds in this series serve also as positive allosteric modulators of mGluR1. Although CDPPB is selective for mGluR5 relative to other mGluR subtypes, several CDPPB analogs also showed 2.5-fold potentiation of glutamate-induced calcium transients in cells expressing mGluR1 at 10 muM, with 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide (VU-71) being selective for mGluR1. In previous studies, we found that two structural classes of mGluR5-selective allosteric potentiators, including CDPPB, share a common binding site with the allosteric mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine. Negative allosteric modulators of mGluR1, regardless of structural class, have been reported to bind to a common allosteric antagonist site on this receptor. However, neither the novel CDPPB analogs nor previously identified allosteric mGluR1 potentiators [e.g., (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine (Ro 67-7476), ethyl diphenylacetylcarbamate (Ro 01-6128), and butyl (9H-xanthene-9-carbonyl)carbamate (Ro 67-4853)] displaced the binding of [(3)H]1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone (R214127), a high-affinity radioligand for the allosteric antagonist site on mGluR1 at concentrations several orders of magnitude higher than those required to induce allosteric potentiation of mGluR1 responses. These data suggest that allosteric potentiators of mGluR1 act at a site that is distinct from that of allosteric antagonists of mGluR1. Site-directed mutagenesis revealed that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGluR1 potentiators.

MeSH Terms (11)

Allosteric Regulation Allosteric Site Animals Benzamides Calcium Cells, Cultured Cricetinae Pyrazoles Rats Receptors, Metabotropic Glutamate Structure-Activity Relationship

Connections (1)

This publication is referenced by other Labnodes entities:

Links