Active-site-selective labeling of blood coagulation proteinases with fluorescence probes by the use of thioester peptide chloromethyl ketones. II. Properties of thrombin derivatives as reporters of prothrombin fragment 2 binding and specificity of the labeling approach for other proteinases.

Bock PE
J Biol Chem. 1992 267 (21): 14974-81

PMID: 1634536

The behavior of an array of fluorescent human alpha-thrombin derivatives in reporting binding of the fragment 2 domain of prothrombin was characterized as a representative application of the active-site-selective labeling approach to studies of blood coagulation proteinase regulatory interactions. An array of 16 thrombin derivatives was prepared by affinity labeling of the proteinase active site with the thioester peptide chloromethyl ketones, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl or N alpha-[(acetylthio)acetyl]-D-Phe-Phe-Arg-CH2Cl, followed by selective modification of the NH2OH-generated thiol group on the covalently incorporated inhibitors with each of eight thiol-reactive fluorescence probes. The changes in probe fluorescence intensity of the derivatives, signaling changes in the environment of the catalytic site associated with fragment 2 binding, appeared to be a unique and unpredictable function of the structure of the probe and the connecting peptide. These results demonstrated the utility of the labeling approach for overcoming the problem of not being able to predict which fluorescent label will provide the most useful proteinase derivative for investigating an interaction by enabling a greater variety of them to be prepared and screened for those with the most desirable properties. To determine whether the approach could be extended to other proteinases, the specificity of labeling with the fluorescence probe iodoacetamide, 5-(iodoacetamido)fluorescein, by use of the two thioester inhibitors was evaluated for several other blood coagulation proteinases and related trypsin-like enzymes. All of the proteinases were labeled in an active-site-selective manner. The combined results of quantitating the labeling reactions for the proteinase and inhibitor combinations studied thus far showed active-site-specific incorporation of 0.98 +/- 0.10 mol of inhibitor/mol of active sites and 0.92 +/- 0.11 mol of probe/mol of active sites, representing an overall greater than or equal to 93% site-specificity of labeling. These results demonstrated the broad applicability of the labeling approach for fluorescence studies of proteinases that differ greatly in their catalytic specificities.

MeSH Terms (13)

Amino Acid Chloromethyl Ketones Binding Sites Blood Coagulation Factors Catalysis Electrophoresis, Polyacrylamide Gel Enzyme Precursors Fluorescent Dyes Humans Hydrolysis Peptide Fragments Prothrombin Substrate Specificity Thrombin

Connections (1)

This publication is referenced by other Labnodes entities: