Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain.

Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M
J Biol Chem. 2005 280 (1): 88-93

PMID: 15525652 · DOI:10.1074/jbc.M411824200

Processing of the laminin-5 (Ln-5) gamma 2 chain by membrane-type-1 matrix metalloproteinases (MT1-MMP) promotes migration and invasion of epithelial and tumor cells. We previously demonstrated that MT1-MMP cleaves the rat gamma 2 chain at two sites, producing two major C-terminal fragments of 100 (gamma 2') and 80 (gamma 2 x) kDa and releasing a 30-kDa fragment containing epidermal growth factor (EGF)-like motifs (domain III (DIII) fragment). The DIII fragment bound the EGF receptor (EGF-R) and stimulated cell scattering and migration. However, it is not yet clear whether human Ln-5 is processed in a similar fashion to rat Ln-5 because one of the two MT1-MMP cleavage sites present in rat gamma 2 is not found in human gamma 2. To identify the exact cleavage site for MT1-MMP in human Ln-5, we purified both the whole molecule as well as a monomeric form of human gamma 2 that is frequently expressed by malignant tumor cells. Like rat Ln-5, both the monomer of gamma 2, as well as the gamma 2 derived from intact Ln-5, were cleaved by MT1-MMP in vitro, generating C-terminal gamma 2' (100 kDa) and gamma 2 x (85 kDa) fragments and releasing DIII fragments (25 and 27k Da). In addition to the conserved first cleavage site used to generate gamma 2', two adjacent cleavage sites (Gly(559)-Asp(560) and Gly(579)-Ser(580)) were found that could generate the gamma 2 x and DIII fragments. Two of the three EGF-like motifs present in the rat DIII fragment are present in the 27-kDa human fragment, and like the rat DIII, this fragment can promote breast carcinoma cell migration by engaging the EGF-R. These results suggest that MT1-MMP processing of Ln-5 in human tumors may stimulate the EGF-R, resulting in increased tumor cell scattering and migration that could possibly increase their metastatic potential.

MeSH Terms (13)

Animals Binding Sites Cell Line, Tumor Cell Movement ErbB Receptors Humans Laminin Matrix Metalloproteinases, Membrane-Associated Metalloendopeptidases Neoplasm Invasiveness Rats Recombinant Proteins Substrate Specificity

Connections (3)

This publication is referenced by other Labnodes entities: