Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling.

Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N
Mol Endocrinol. 2003 17 (7): 1240-54

PMID: 12730331 · DOI:10.1210/me.2002-0190

Liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors that form obligate heterodimers with retinoid X receptors (RXRs). These nuclear receptors play crucial roles in the regulation of fatty acid metabolism: LXRs activate expression of sterol regulatory element-binding protein 1c (SREBP-1c), a dominant lipogenic gene regulator, whereas PPARalpha promotes fatty acid beta-oxidation genes. In the current study, effects of PPARs on the LXR-SREBP-1c pathway were investigated. Luciferase assays in human embryonic kidney 293 cells showed that overexpression of PPARalpha and gamma dose-dependently inhibited SREBP-1c promoter activity induced by LXR. Deletion and mutation studies demonstrated that the two LXR response elements (LXREs) in the SREBP-1c promoter region are responsible for this inhibitory effect of PPARs. Gel shift assays indicated that PPARs reduce binding of LXR/RXR to LXRE. PPARalpha-selective agonist enhanced these inhibitory effects. Supplementation with RXR attenuated these inhibitions by PPARs in luciferase and gel shift assays, implicating receptor interaction among LXR, PPAR, and RXR as a plausible mechanism. Competition of PPARalpha ligand with LXR ligand was observed in LXR/RXR binding to LXRE in gel shift assay, in LXR/RXR formation in nuclear extracts by coimmunoprecipitation, and in gene expression of SREBP-1c by Northern blot analysis of rat primary hepatocytes and mouse liver RNA. These data suggest that PPARalpha activation can suppress LXR-SREBP-1c pathway through reduction of LXR/RXR formation, proposing a novel transcription factor cross-talk between LXR and PPARalpha in hepatic lipid homeostasis.

MeSH Terms (29)

Animals Anticholesteremic Agents CCAAT-Enhancer-Binding Proteins Cells, Cultured DNA-Binding Proteins Fatty Acids Gene Expression Regulation Hepatocytes Humans Hydrocarbons, Fluorinated Liver Liver X Receptors Male Mice Mice, Inbred C57BL Nutritional Physiological Phenomena Orphan Nuclear Receptors Promoter Regions, Genetic Pyrimidines Rats Rats, Sprague-Dawley Receptors, Cytoplasmic and Nuclear Receptors, Retinoic Acid Response Elements Retinoid X Receptors Signal Transduction Sterol Regulatory Element Binding Protein 1 Sulfonamides Transcription Factors

Connections (1)

This publication is referenced by other Labnodes entities: