Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301-substrate electrostatic bonding.

Guengerich FP, Miller GP, Hanna IH, Martin MV, L├ęger S, Black C, Chauret N, Silva JM, Trimble LA, Yergey JA, Nicoll-Griffith DA
Biochemistry. 2002 41 (36): 11025-34

PMID: 12206675 · DOI:10.1021/bi020341k

Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Residue Asp301 has been characterized as being involved in electrostatic interactions with substrates on the basis of homology modeling and site-directed mutagenesis experiments [Ellis, S. W., Hayhurst, G. P., Smith, G., Lightfoot, T., Wong, M. M. S., Simula, A. P., Ackland, M. J., Sternberg, M. J. E., Lennard, M. S., Tucker, G. T., and Wolf, C. R. (1995) J. Biol. Chem. 270, 29055-29058]. However, pharmacophore models based on the role of Asp301 in substrate binding are compromised by reports of catalytic activity toward substrates devoid of a basic nitrogen, which have generally been ignored. We characterized a high-affinity ligand for P450 2D6, also devoid of a basic nitrogen atom, spirosulfonamide [4-[3-(4-fluorophenyl)-2-oxo-1-oxaspiro[4.4]non-3-en-4-yl]benzenesulfonamide], with K(s) 1.6 microM. Spirosulfonamide is a substrate for P450 2D6 (k(cat) 6.5 min(-)(1) for the formation of a syn spiromethylene carbinol, K(m) 7 microM). Mutation of Asp301 to neutral residues (Asn, Ser, Gly) did not substantially affect the binding of spirosulfonamide (K(s) 2.5-3.5 microM). However, the hydroxylation of spirosulfonamide was attenuated in these mutants to the same extent (90%) as for the classic nitrogenous substrate bufuralol, and the effect of the D301N substitution was manifested on k(cat) but not K(m). Analogues of spirosulfonamide were also evaluated as ligands and substrates. Analogues in which the sulfonamide moiety was modified to an amide, thioamide, methyl sulfone, or hydrogen were ligands with K(s) values of 1.7-32 microM. All were substrates, and the methyl sulfone analogue was oxidized to the syn spiromethylene carbinol analogue of the major spirosulfonamide product. The D301N mutation produced varying changes in the oxidation patterns of the spirosulfonamide analogues. The peptidometic ritonavir and the steroids progesterone and testosterone had been reported to be substrates for P450 2D6, but the affinities (K(s)) were unknown; these were estimated to be 1.2, 1.5, and 15 microM, respectively (cf. 6 microM for the classic substrate bufuralol). The results are consistent with a role of Asp301 other than electrostatic interaction with a positively charged ligand. H-Bonding or electrostatic interactions probably enhance binding of some substrates, but our results show that it is not required for all substrates and explain why predictive models fail to recognize the proclivity for many substrates, especially those containing no basic nitrogen.

MeSH Terms (17)

Amines Amino Acid Substitution Aspartic Acid Baculoviridae Binding Sites Catalysis Cytochrome P-450 CYP2D6 Humans Hydrogen Bonding Ligands Microsomes, Liver Oxidation-Reduction Recombinant Proteins Spiro Compounds Static Electricity Substrate Specificity Sulfonamides

Connections (1)

This publication is referenced by other Labnodes entities: