Fructose augments infection-impaired net hepatic glucose uptake during TPN administration.

Donmoyer CM, Ejiofor J, Lacy DB, Chen SS, McGuinness OP
Am J Physiol Endocrinol Metab. 2001 280 (5): E703-11

PMID: 11287352 · DOI:10.1152/ajpendo.2001.280.5.E703

During chronic total parenteral nutrition (TPN), net hepatic glucose uptake (NHGU) and net hepatic lactate release (NHLR) are markedly reduced (downward arrow approximately 45 and approximately 65%, respectively) with infection. Because small quantities of fructose are known to augment hepatic glucose uptake and lactate release in normal fasted animals, the aim of this work was to determine whether acute fructose infusion with TPN could correct the impairments in NHGU and NHLR during infection. Chronically catheterized conscious dogs received TPN for 5 days via the inferior vena cava at a rate designed to match daily basal energy requirements. On the third day of TPN administration, a sterile (SHAM, n = 12) or Escherichia coli-containing (INF, n = 11) fibrin clot was implanted in the peritoneal cavity. Forty-two hours later, somatostatin was infused with intraportal replacement of insulin (12 +/- 2 vs. 24 +/- 2 microU/ml, SHAM vs. INF, respectively) and glucagon (24 +/- 4 vs. 92 +/- 5 pg/ml) to match concentrations previously observed in sham and infected animals. After a 120-min basal period, animals received either saline (Sham+S, n = 6; Inf+S, n = 6) or intraportal fructose (0.7 mg x kg(-1) x min(-1); Sham+F, n = 6; Inf+F, n = 5) infusion for 180 min. Isoglycemia of 120 mg/dl was maintained with a variable glucose infusion. Combined tracer and arteriovenous difference techniques were used to assess hepatic glucose metabolism. Acute fructose infusion with TPN augmented NHGU by 2.9 +/- 0.4 and 2.5 +/- 0.3 mg x kg(-1) x min(-1) in Sham+F and Inf+F, respectively. The majority of liver glucose uptake was stored as glycogen, and NHLR did not increase substantially. Therefore, despite an infection-induced impairment in NHGU and different hormonal environments, small amounts of fructose enhanced NHGU similarly in sham and infected animals. Glycogen storage, not lactate release, was the preferential fate of the fructose-induced increase in hepatic glucose disposal in animals adapted to TPN.

MeSH Terms (14)

Animals Blood Glucose Dogs Escherichia coli Infections Female Fructose Glucose Glycogen Hindlimb Hormones Kinetics Lactic Acid Liver Parenteral Nutrition, Total

Connections (1)

This publication is referenced by other Labnodes entities:

Links