Human, but not bovine, oxidized cerebral spinal fluid lipoproteins disrupt neuronal microtubules.

Neely MD, Swift LL, Montine TJ
Lipids. 2000 35 (11): 1249-57

PMID: 11132184 · DOI:10.1007/s11745-000-0641-8

Cerebral spinal fluid (CSF) lipoproteins have become a focus of research since the observation that inheritance of particular alleles of the apolipoprotein E gene affects the risk of Alzheimer's disease (AD). There is evidence of increased lipid peroxidation in CSF lipoproteins from patients with AD, but the biological significance of this observation is not known. A characteristic of the AD brain is a disturbance of the neuronal microtubule organization. We have shown previously that 4-hydroxy-2(E)-nonenal, a major product of lipid peroxidation, causes disruption of neuronal microtubules and therefore tested whether oxidized CSF lipoproteins had the same effect. We exposed Neuro 2A cells to human CSF lipoproteins and analyzed the microtubule organization by immunofluorescence. In vitro oxidized human CSF lipoproteins caused disruption of the microtubule network, while their native (nonoxidized) counterparts did not. Microtubule disruption was observed after short exposures (1 h) and lipoprotein concentrations were present in CSF (20 microg/mL), conditions that did not result in loss of cell viability. Importantly, adult bovine CSF lipoproteins, oxidized under identical conditions, had no effect on the microtubule organization of Neuro 2A cells. Comparison of human and bovine CSF lipoproteins revealed similar oxidation-induced modifications of apolipoproteins E and A-I as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Fatty acid analysis revealed substantially lower amounts of unsaturated fatty acids in bovine CSF lipoproteins, when compared to their human counterparts. Our data therefore indicate that oxidized human CSF lipoproteins are detrimental to neuronal microtubules. This effect is species-specific, since equally oxidized bovine CSF lipoproteins left the neuronal microtubule organization unchanged.

MeSH Terms (10)

Animals Apolipoprotein A-I Apolipoproteins E Cattle Cells, Cultured Humans Lipoproteins Microtubules Neurons Oxidation-Reduction

Connections (2)

This publication is referenced by other Labnodes entities: