Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis.

Einolf HJ, Guengerich FP
J Biol Chem. 2001 276 (6): 3764-71

PMID: 11110788 · DOI:10.1074/jbc.M006696200

Nucleotide insertion opposite 8-oxo-7,8-dihydroguanine (8-oxoG) by fetal calf thymus DNA polymerase delta (pol delta) was examined by steady-state and pre-steady-state rapid quench kinetic analyses. In steady-state reactions with the accessory protein proliferating cell nuclear antigen (PCNA), pol delta preferred to incorporate dCTP opposite 8-oxoG with an efficiency of incorporation an order of magnitude lower than incorporation into unmodified DNA (mainly due to an increased K(m)). Pre-steady-state kinetic analysis of incorporation opposite 8-oxoG showed biphasic kinetics for incorporation of either dCTP or dATP, with rates similar to dCTP incorporation opposite G, large phosphorothioate effects (>100), and oligonucleotide dissociation apparently rate-limiting in the steady-state. Although pol delta preferred to incorporate dCTP (14% misincorporation of dATP) the extension past the A:8-oxoG mispair predominated. The presence of PCNA was found to be a more essential factor for nucleotide incorporation opposite 8-oxoG adducts than unmodified DNA, increased pre-steady-state rates of nucleotide incorporation by >2 orders of magnitude, and was essential for nucleotide extension beyond 8-oxoG. pol delta replication fidelity at 8-oxoG depends upon contributions from K(m), K(d)(dNTP), and rates of phosphodiester bond formation, and PCNA is an important accessory protein for incorporation and extension at 8-oxoG adducts.

MeSH Terms (12)

Adenosine Triphosphate Animals Base Sequence Cattle Cytidine Triphosphate DNA Polymerase III DNA Primers Guanine Humans Kinetics Proliferating Cell Nuclear Antigen Recombinant Proteins

Connections (1)

This publication is referenced by other Labnodes entities: