Catalytic properties of polymorphic human cytochrome P450 1B1 variants.

Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, Inoue K
Carcinogenesis. 1999 20 (8): 1607-13

PMID: 10426814 · DOI:10.1093/carcin/20.8.1607

Four polymorphic human cytochrome P450 (CYP) 1B1 allelic variants, namely Arg48,Ala119,Leu432,Asn453, Arg48,Ser119,Leu432,Asn453, Arg48, Ala119,Val432,Asn-453 and Arg48,Ser119,Val432,Asn453, were expressed in Escherichia coli together with human NADPH-P450 reductase and the recombinant proteins (in bacterial membranes) were used to assess whether CYP1B1 polymorphisms affect catalytic activities towards a variety of P450 substrates, including diverse procarcinogens and steroid hormones. Activities for activation of 19 procarcinogens to DNA-damaging products by these four CYP1B1 variants in a Salmonella typhimurium NM2009 umu response system were found to be essentially similar, except that a Arg48, Ser119,Leu432,Asn453 variant was slightly more active (1.2- to 1.5-fold) than the other three CYP1B1 enzymes in catalyzing activation of (+)- and (-)-benzo[a]pyrene-7, 8-diols, 7,12-dimethylbenz[a]anthracene-3,4-diol, benzo[g]chrysene-11,12-diol, benzo[b]fluoranthene-9,10-diol, 2-amino-3,5-dimethylimidazo[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoline and 2-aminofluorene. Kinetic analysis of 17beta-estradiol hydroxylation showed that V(max) values for 4-hydroxylation ranged between 0.9 and 1.5 nmol/min/nmol P450 for 4-hydroxylation and 0.3 and 0.6 nmol/min/nmol P450 for 2-hydroxylation in these CYP1B1 variants, with K(m) values ranging from 1 to 9 microM. Interestingly, the ratio of product formation of 4-hydroxyestradiol to 2-hydroxyestradiol was higher for the Val432 variants of CYP1B1 variants than the Leu432 variants of the enzyme. The same trend was noted in the ratio of estrone 4-hydroxylation to estrone 2-hydroxylation catalyzed by CYP1B1 variants. Mutation in the CYP1B1 genes also affected the K(m) and V(max) values in the 6beta-hydroxylation of testosterone and 6beta- and 16alpha-hydroxylation of progesterone. These results indicate that the polymorphisms in the human CYP1B1 gene cause some alterations in catalytic function towards procarcinogens and steroid hormones and thus may make some contribution to susceptibilities of individuals towards mammary and lung cancers in humans.

MeSH Terms (16)

Alleles Aryl Hydrocarbon Hydroxylases Carcinogens Cytochrome P-450 CYP1A1 Cytochrome P-450 CYP1B1 Cytochrome P-450 CYP2C8 Cytochrome P-450 CYP2C9 Cytochrome P-450 Enzyme System Escherichia coli Estradiol Estrone Humans Hydroxylation Progesterone Steroid 16-alpha-Hydroxylase Testosterone

Connections (1)

This publication is referenced by other Labnodes entities: