Quantification of the major urinary metabolite of 15-F2t-isoprostane (8-iso-PGF2alpha) by a stable isotope dilution mass spectrometric assay.

Morrow JD, Zackert WE, Yang JP, Kurhts EH, Callewaert D, Dworski R, Kanai K, Taber D, Moore K, Oates JA, Roberts LJ
Anal Biochem. 1999 269 (2): 326-31

PMID: 10222005 · DOI:10.1006/abio.1999.4008

The isoprostanes (IsoPs) are a series of novel prostaglandin (PG)-like compounds generated from the free radical-catalyzed peroxidation of arachidonic acid. The first series of IsoPs characterized contained F-type prostane rings analogous to PGF2alpha. One F-ring IsoP, 15-F2t-IsoP (8-iso-PGF2alpha) has been shown to be formed in abundance in vivo and to exert potent biological activity. As a means to assess the endogenous production of this compound, we developed a method to quantify the major urinary metabolite of 15-F2t-IsoP, 2,3-dinor-5,6-dihydro-15-F2t-IsoP (2,3-dinor-5, 6-dihydro-8-iso-PGF2alpha), by gas chromotography/negative ion chemical ionization mass spectrometry. This metabolite was chemically synthesized and converted to an 18O2-labeled derivative for use as an internal standard. After purification, the compound was analyzed as a pentafluorobenzyl ester trimethylsilyl ether. Precision of the assay is +/-4% and accuracy is 97%. The lower limit of sensitivity is approximately 20 pg. Levels of the urinary excretion of this metabolite in 10 normal adults were found to be 0. 39 +/- 0.18 ng/mg creatinine (mean +/- 2 SD). Substantial elevations in the urinary excretion of the metabolite were found in situations in which IsoP generation is increased and antioxidants effectively suppressed metabolite excretion. Levels of 2,3-dinor-5, 6-dihydro-15-F2t-IsoP were not affected by cyclooxygenase inhibitors. Thus, this assay provides a sensitive and accurate method to assess endogenous production of 15-F2t-IsoP as a means to explore the pathophysiological role of this compound in human disease.

Copyright 1999 Academic Press.

MeSH Terms (11)

Adult Animals Dinoprost F2-Isoprostanes Gas Chromatography-Mass Spectrometry Humans Oxidative Stress Oxygen Isotopes Rats Reference Values Reproducibility of Results

Connections (2)

This publication is referenced by other Labnodes entities: